Diferencia entre revisiones de «Cálculo de materiales»
Sin resumen de edición |
|||
Línea 6: | Línea 6: | ||
[[Archivo:esquema cálculos volúmenes.png|center|1024px]] | [[Archivo:esquema cálculos volúmenes.png|center|1024px]] | ||
==== <math>V_A</math> volumen de superadobe por encima de la línea de surgencia ==== | |||
<math>N \text{ — número de hiladas por encima de la línea de surgencia}</math> | |||
<math> | |||
\color{Green}{l}^2 = h^2+(\color{Green}{l}-\color{Green}{r})^2 | |||
\\ | |||
h=\sqrt{\color{Green}{l}^2 - \left(\color{Green}{l} - \color{Green}{r} \right)^2} | |||
\\ | |||
N = \dfrac{h}{\color{Green}{s_h}} | |||
\\ | |||
N = \dfrac{ | |||
\sqrt{ | |||
\color{Green}{l}^2 - \left(\color{Green}{l} - \color{Green}{r} \right)^2 | |||
} | |||
}{\color{Green}{s_h}} | |||
</math> | |||
<math> | |||
\begin{align} | |||
V_A(n) & = \color{Green}{s_w} \color{Green}{s_h} 2 \pi r_{n(A)} \\ | |||
& = \color{Green}{s_w} \color{Green}{s_h} 2 \pi \left(\color{Green}{r} - \color{Green}{l} + \frac{1}{2}\color{Green}{s_w} + \sqrt{\color{Green}{l}^2-\left[\left(n - \frac{1}{2} \right)\color{Green}{s_h} \right]^2} \right) | |||
\end{align} | |||
</math> | |||
<math> | |||
\begin{align} | |||
V_A & = \color{Green}{s_w} \color{Green}{s_h} 2 \pi \sum_{n=1}^N \left(\color{Green}{r} - \color{Green}{l} + \frac{1}{2}\color{Green}{s_w} + \sqrt{\color{Green}{l}^2-\left[\left(n - \frac{1}{2} \right)\color{Green}{s_h} \right]^2} \right) \\ | |||
& = \color{Green}{s_w} \color{Green}{s_h} 2 \pi \left[ N \left(\color{Green}{r} - \color{Green}{l} + \frac{1}{2}\color{Green}{s_w} \right) + \sum_{n=1}^N \sqrt{\color{Green}{l}^2-\left[\left(n - \frac{1}{2} \right)\color{Green}{s_h} \right]^2} \right] | |||
\end{align} | |||
</math> | |||
=== Ecuaciones === | === Ecuaciones === |
Revisión del 19:13 9 jul 2015
Volumen total de superadobe
Al calcular el volumen de superadobe se obtienen las longitudes necesarias de saco y alambre, así como el volumen de material de drenaje.
Para el cálculo del volumen de superadobe, se calcula la longitud de cada hilada —longitud de la circunferencia que describe el tubo— en el punto medio del saco —por similitud con el cálculo del volumen de un toro— y se multiplica por la sección del saco lleno y compactado. En cada hilada, la longitud de la circunferencia es función del radio del domo a la altura del saco. Por debajo de la línea de surgencia el radio es constante.
volumen de superadobe por encima de la línea de surgencia
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://es.wikipedia.org/api/rest_v1/»:): {\displaystyle \color{Green}{l}^2 = h^2+(\color{Green}{l}-\color{Green}{r})^2 \\ h=\sqrt{\color{Green}{l}^2 - \left(\color{Green}{l} - \color{Green}{r} \right)^2} \\ N = \dfrac{h}{\color{Green}{s_h}} \\ N = \dfrac{ \sqrt{ \color{Green}{l}^2 - \left(\color{Green}{l} - \color{Green}{r} \right)^2 } }{\color{Green}{s_h}} }
Ecuaciones
Sección del saco
Error al representar (error de sintaxis): {\displaystyle \color{Green}{L_v} \text{— anchura del saco vacío} \\ \color{Green}{s_h} — \text{altura del saco lleno y compactado} \\ s_w — \text{anchura del saco lleno y compactado} }
Sección rectangular
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://es.wikipedia.org/api/rest_v1/»:): {\displaystyle s_w = \color{Green}{L_v} - \color{Green}{s_h} \\ A_{saco} = s_w \times \color{Green}{s_h} = \left(\color{Green}{L_v} - \color{Green}{s_h} \right) \times \color{Green}{s_h}}
Sección con laterales semicurculares
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://es.wikipedia.org/api/rest_v1/»:): {\displaystyle s_w = \color{Green}{L_v} - \dfrac{\pi \color{Green}{s_h}}{2} + \color{Green}{s_h} = \color{Green}{L_v} + \color{Green}{s_h}\left(1 - \dfrac{\pi}{2}\right) \\ A_{saco} = \left(\color{Green}{L_v} - \dfrac{\pi \color{Green}{s_h}}{2} \right) \times \color{Green}{s_h} + \pi \left(\dfrac{\color{Green}{s_h}}{2}\right)^2 = \color{Green}{L_v} \color{Green}{s_h} - \dfrac{\pi \color{Green}{s_h}^2}{4} }
Sección con laterales como segmentos circulares
Error al representar (error de sintaxis): {\displaystyle s_w = \color{Green}{L_v} - \dfrac{\pi \color{Green}{s_h}}{3} + 2 \left(\color{Green}{s_h} - \sqrt{\color{Green}{s_h}^2 - \left(\dfrac{\color{Green}{s_h}}{2} \right)^2} \right) = \color{Green}{L_v} - \dfrac{\pi \color{Green}{s_h}}{3} + 2 \left(\color{Green}{s_h} - \color{Green}{s_h} \dfrac{\sqrt{3}}{2} \right) = \color{Green}{L_v} + \color{Green}{s_h} \left( 2 - \dfrac{\sqrt{3}}{2} - \dfrac{\pi}{3} \right) = \color{Green}{L_v} + \dfrac{\color{Green}{s_h}}{3} \left( 6 - 3\sqrt{3} - {\pi} \right) \\ \sin \alpha = \dfrac{\dfrac{\color{Green}{s_h}}{2}}{\color{Green}{s_h}} = \dfrac{1}{2}; \alpha = 30^\circ \\ \begin{align} A_{saco} & = \left(\color{Green}{L_v} - \dfrac{\pi \color{Green}{s_h}}{3} \right) \times \color{Green}{s_h} + 2 \left(\pi \color{Green}{s_h}^2 \times \dfrac{2\alpha}{360} - \dfrac{1}{2} \times \color{Green}{s_h} \sqrt{\color{Green}{s_h}^2 - \left(\dfrac{\color{Green}{s_h}}{2} \right)^2} \right) \\ & = \color{Green}{L_v} \color{Green}{s_h} - \dfrac{\pi \color{Green}{s_h}^2}{3} + 2 \left(\pi \color{Green}{s_h}^2 \times \dfrac{1}{6} - \dfrac{1}{2} \times \dfrac{\color{Green}{s_h}^2 \sqrt{3}}{2} \right) \\ & = \color{Green}{L_v} \color{Green}{s_h} - \dfrac{\pi \color{Green}{s_h}^2}{3} + \dfrac{\pi \color{Green}{s_h}^2}{3} - \dfrac{\color{Green}{s_h}^2 \sqrt{3}}{2} \\ & = \color{Green}{L_v} \color{Green}{s_h} - \color{Green}{s_h}^2 \dfrac{\sqrt{3}}{2} \end{align} }
Sección para cálculos
Usar una sección u otra conlleva variaciones en los cálculos, ya que el área de cada una es distinta:
Altura del saco lleno y compactado | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sección rectangular | Sección con semicírculos | Sección con segmentos circulares | ||||||||
in | 2,00 | 3,00 | 5,00 | 2,00 | 3,00 | 5,00 | 2,00 | 3,00 | 5,00 | |
cm | 5,08 | 7,62 | 12,70 | 5,08 | 7,62 | 12,70 | 5,08 | 7,62 | 12,70 | |
Anchura del saco vacío (cm) | 30 | 126,59 | 170,54 | 219,71 | 132,13 | 183,00 | 254,32 | 130,05 | 178,31 | 241,32 |
35 | 151,99 | 208,64 | 283,21 | 157,53 | 221,10 | 317,82 | 155,45 | 216,41 | 304,82 | |
40 | 177,39 | 246,74 | 346,71 | 182,93 | 259,20 | 381,32 | 180,85 | 254,51 | 368,32 | |
45 | 202,79 | 284,84 | 410,21 | 208,33 | 297,30 | 444,82 | 206,25 | 292,61 | 431,82 | |
50 | 228,19 | 322,94 | 473,71 | 233,73 | 335,40 | 508,32 | 231,65 | 330,71 | 495,32 | |
55 | 253,59 | 361,04 | 537,21 | 259,13 | 373,50 | 571,82 | 257,05 | 368,81 | 558,82 | |
60 | 278,99 | 399,14 | 600,71 | 284,53 | 411,60 | 635,32 | 282,45 | 406,91 | 622,32 |
Valores de sección
El área de la sección del saco, , debe multiplicarse por la longitud del mismo —longitud de la circunferencia que describe el tubo en la hilada correspondiente—, que en cada caso es función del radio del domo a la altura del saco; a esta medida se suma la mitad de la anchura del saco lleno —por similitud con el cálculo del volumen de un toro—. Por debajo de la línea de surgencia el radio es constante:
Error al representar (error de sintaxis): {\displaystyle r_C = {\color{Green}{r} + {3 \over 2} s_w} \text{ — para el volumen de C} \\ r_{D,E} = {\color{Green}{r} + {1 \over 2} s_w} \text{ — para los volúmenes de D y E} }
Por encima de la línea de surgencia, el radio de la n-ésima hilada lo determinan la longitud del compás de altura y la altura donde se encuentra el saco, , que, considerando la altura hasta la mitad del saco, es igual a Error al representar (error de sintaxis): {\displaystyle n − {1 \over 2}}
veces la altura del saco lleno . Aplicando el teorema de Pitágoras:
Error al representar (error de sintaxis): {\displaystyle \color{Green}{l}^2 = h_n^2 + l_n^2 \\ l_n = \color{Green}{l} - \color{Green}{r} + r_n \\ h_n = \left(n - {1 \over 2} \right)\color{Green}{s_h} }
Error al representar (SVG (MathML puede ser habilitado mediante un plugin de navegador): respuesta no válida («Math extension cannot connect to Restbase.») del servidor «https://es.wikipedia.org/api/rest_v1/»:): {\displaystyle \color{Green}{l}^2 = \left[\left(n - {1 \over 2} \right)\color{Green}{s_h} \right]^2 + \left(\color{Green}{l} -\color{Green}{r} + r_n \right)^2 \\ \color{Green}{l} -\color{Green}{r} + r_n = \sqrt{\color{Green}{l}^2 - \left[\left(n - {1 \over 2} \right)\color{Green}{s_h} \right]^2} \\ r_n = \color{Green}{r} - \color{Green}{l} + \sqrt{\color{Green}{l}^2 - \left[\left(n - {1 \over 2} \right)\color{Green}{s_h} \right]^2} }
Añadiendo la mitad de la anchura del saco lleno, el radio resultante para el cálculo de los volúmenes del muro del domo por encima de la línea de surgencia (volúmenes en A) es:
Los volúmenes de B se calculan añadiendo a la fórmula anterior la anchura del saco lleno:
Con las fórmulas anteriores, la suma de volúmenes queda como sigue:
volumen de superadobe por encima de la línea de surgencia
Error al representar (error de sintaxis): {\displaystyle \color{Green}{l}^2 = h^2+(\color{Green}{l}-\color{Green}{r})^2 \\ h=\sqrt{\color{Green}{l}^2 - \left(\color{Green}{l} - \color{Green}{r} \right)^2} \\ N = \dfrac{h}{\color{Green}{s_h}} \\ N = \dfrac{ \sqrt{ \color{Green}{l}^2 - \left(\color{Green}{l} - \color{Green}{r} \right)^2 } }{\color{Green}{s_h}} }
volumen de superadobe en el contrafuerte por encima de la línea de surgencia
Error al representar (error de sintaxis): {\displaystyle \color{Green}{h_c} \text{ — altura del contrafuerte por encima de la línea de surgencia (m)} \\ C \text{ — número de hiladas del contrafuerte por encima de la línea de surgencia} \\ C = \dfrac{\color{Green}{h_c}}{\color{Green}{s_h}} }
volumen de superadobe en el contrafuerte por debajo de la línea de surgencia
volumen de superadobe por debajo de la línea de surgencia
volumen de superadobe en los cimientos
Volumen total de superadobe
Mortero —tierra (arcilla más arenas y gravas) más estabilizante—
Tierra: arcilla más arenas y gravas
– proporción de arcilla de la tierra
– proporción de arenas y gravas de la tierra
Estabilizante
– proporción de estabilizante con respecto al volumen de tierra
Agua
El volumen de agua necesario se calcula en función del volumen de mortero, pero no se tiene en cuenta en la suma de volúmenes que intervienen en el resultado final:
– proporción de agua para amasar el mortero